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Abstract 

A rigorous treatment of the constraints imposed by site 
and body symmetry on the orientational distribution of 
librating molecules is presented in terms of multipole 
expansions. Radial densities of the site-symmetric 
dynamic multipole expansion are linear combinations 
of the radial densities of the body-symmetric static 
multipole expansion of the same multipole order. The 
transformation from static to dynamic radial densities 
is transmitted by libration matrices, which can be 
included as parameters in a structure factor model. The 
matrix elements are connected to the rotational 
dynamics of the molecule. They are expansion coef- 
ficients of the orientational distribution in a basis 
obtained by site and body symmetrization of the real 
Wigner functions. Both symmetrizations are reduced to 
selecting terms from a general basis according to simple 
index rules. Independence of the kind of density 
function and Fourier invariance make the formalism 
useful in combined neutron and X-ray diffraction 
studies. 

1. Introduction 

Site-symmetric multipole expansions have gained 
increasing favour in X-ray and X - N  studies of charge 
density (Kurki-Suonio, 1977a,b; Coppens, 1977; Cop- 
pens & Hansen, 1977; Coppens & Stevens, 1977; and 
references therein). In particular, they offer a suitable 
formalism for treatment of rigid molecules. There are 
several successful multipole studies of the motion and 
orientational disorder of molecules (Seymour & Pryor, 
1970; Press & Hiiller, 1973; Hfiller & Press, 1979; 
Press, Grimm & Hfiller, 1979; and references therein). 
At positions of high site symmetry, the assumption of 
rigidity and neglect of the coupling between librations 
and vibrations reduce the effect of orientational 
disorder - either dynamic or static - to one constant 
multiplier for each low-order multipole component 
(Press & Hiiller, 1973; Kurki-Suonio, Merisalo, Vah- 
vaselk~i & Larsen, 1976). This leads to an extremely 
simple parametrization of the problem. On the other 
hand, these constants, the libration factors, can be 
derived from the experimental neutron scattering 
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amplitudes by direct analysis of the nuclear density 
(Vahvaselk~i & Kurki-Suonio, 1975; Ahtee, Kurki- 
Suonio, Lucas & Hewat, 1979). 

From the derivation of this basic result for the cubic 
case it is obvious that an analogous general theorem 
exists, which would allow the use of the multipole 
formalism in other site symmetries. The purpose of this 
paper is to derive this generalization, to give the rules 
necessary for its application in any symmetry and to 
discuss its consequences. 

2. Site symmetry of orientational distributions 

Multipole formulation of the problem 
The relationship between the static density a(r) and 

the dynamic density p(r) of a rigid librating molecule is 
defined by its orientational distributionf(a,fl, y) = f ( w )  
through 

p(r) = f f (w)~(w)a(r)  dw, (1) 

where ~ ( w )  denotes rotation through Eulerian angles 
a, fl, y about the centre of mass of the molecule. The 
integration is over all rotations, i.e. 

2~ n 2n 
f d o ) =  f f f dasin fldfldy. 

0 0 0  

The density a may be any kind of density function, 
particularly charge density or nuclear density observed 
by X-ray and neutron diffraction, respectively. 

The distribution f(o)) is an orientational probability 
density. Accordingly, it is non-negative, f > 0, and 
normalized ff(o)) do) = 1. Further, it must possess the 
site symmetry of the molecular centre-of-mass site in its 
environment. This can be defined by the statement: An 
orientational distribution f(o)) is site symmetric if it 
produces from any static density a(l) through (1) a 
site-symmetric dynamic density p(r). 

The densities a and p are properly expressed as 
multipole expansions 

i f ( l ) =  ~ almp(r)Ylmp(O,q~ ) (2) 
lmp 
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p(r) = y. Pimp(r) Ylmp(O,q~) (3) 
Imp 

in terms of the normalized real spherical harmonics 
1 2l + 1 ( l - -m)!]  '/2 

Ylm+(O4P)= 1 + 6,,,o 21r (l + m)!] 

l cos mop 
x Py'(cos 0) I, sin mop (4) 

l = 0, 1,...; m = 0, 1,..., l, 
cf. Appendix. 

In a coordinate system adapted to the symmetry the 
site symmetry of p(r) can be defined by 'picking rules' 
of the indices Imp in (3) (Kurki-Suonio, Merisalo & 
Peltonen, 1979; Kurki-Suonio, 1977a). In the case of 
cubic symmetries the terms are further coupled 
together, within each multipole order I separately, 
yielding an expansion in terms of cubic harmonics. 
Again the symmetry is defined by systematic presence 
and absence of terms in this expansion. 

Symmetric rotator basis for non-cubic sites 
The stationary wave functions of a symmetric 

rotator or the Wigner functions form a natural 
orthogonal basis in the space of normalizable functions 
f(a,fl, y). According to Rose (1957), § 13, they can be 
written 

Dlnm(a,fl, y) -" e -tna dlm(fl)  e -lmv (5) 
with 

dlnm(fl) -- [(l + n)[(l-- n)!(l + m)!(l-- m)!] ~/2 
(--1) t (cos ½fl)2t+,,-m-2t (sin ½fl)2t+m-,, 

(l + n -- t)! ( l -  m - t)! t! (t + m - n)!' 

(6) 
where t runs through all integer values for which the 
denominator is finite, i.e. from max {0, n - m} to 
min { l + m, l - m }. The Dtnm have the normalization 

f lD lm  12 d w =  8~z2/(2l + 1). (7) 

The real benefit from the use of this basis comes from 
the fact that the functions (5) define the transformation 
properties of the spherical harmonics under rotations 

l 
~(a,fl, y) Y~'(O,~o)= ~ D~,m(~,~,y)Y~(O,(O); (8) 

n = - !  

where Y~' are the normalized spherical harmonics: 
[ .2!+1 (l--  m),] 1/2 

Y ~ ( Sdo) (--1)m[ 4zc (l + m)t] 

× PT'(cos 0) e~mo; for m _> 0 (l+,m0) 
: (--1)m 2 (Ylm+ + iYlm-) (9) 

Y i-m(O,~p)=(--1)m(y'~)*=(126mO)U2 

X (Ylm+ -- iYlm-) 
(Rose, 1957, Appendix III). For the rotation of the real 
harmonics (4) this yields 

~ ( a , f l ,  y)Ylmp(O,~O ) = ~. l Cnrmp (a,fl, y) Ylnr(O, tp), (10) 
H r  

where 

Ci = (--1) m+n [ Rm] {Dtnm 
nrmp (1 + ~m0)I/2(1 + ~n0) 1/2 r I 

+ r(--1)nDlnm}; rp= [ i  ] (11) 

__ ( - - 1 )  m + n  1L~p] 

- (1 + amo)l/2(1 + a .o )  1/2 

× { D l m  + p(--1) m Dl_m + r(--1) n D[nm 

+pr(--l)n+mDt._n_m}; r p = [ i  ] (11') 

(--1)m+n { 
-- (1 + JmO)l/2(1 + JnO) 1/2 dlm(if) 

× [ c o s ( h a +  my)] + (__l)ndt_nm(fl) 
[p sin (na + my)J 

x s i n ( n a -  my) J) ' rp= (11") 

are real Wigner functions, cf.. Appendix. The first 
expression (11) is obtained directly from (8) by noting 
that rotation of the real/imaginary part of a function 
necessarily yields the real/imaginary part of the rotated 
function. 

The second form (11') follows then through the 
property (Dim)* = ( -1)  m+" D[,,_ m of the Wigner 
functions. It shows that the functions C~rmp(a,fl, Y) 
form a complete orthogonal basis, since Dim do, and 
have the same normalization 

t 2 1). (12) f(Cnrmp ) do9 = 8rt2/(21 + 

The third form (11") is obtained by substitution of 
(5). It 8ives, together with (6), the explicit expressions 
required in applications. 

We can now represent the orientational distribution 
as a real expansion 

f(a,fl, y)= Z anrmpt Ctnrmv(a,fl, y) (13) 
lnrmp 

with the coefficients 

t __2l+1 f anrmv-- 8~Z 2 f(og)Ct,,rmp(to)d09. (14) 
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Inserting (2), (10) and (13) in the integral (1) and 
applying the orthogonality and normalization (12) of 
the basis we get 

p(r) = f Z 
ln rmp  

t ' n ' r ' m ' p '  

I t I t 
an,r,m, r, X Cn,r,m,u,(O.))etmr(r) 

o r  

l x Cnrmp (o))Ytn,.(O#)dw 

Z [ 87C2 Z l crimp(r) ] Ylnr(O, (0) --~ anrmp [2l + 1 
lnr  m p  

8n 2 
Plnr(r) 

X-' 
l I 

2l + 1 / "  
- -  a n r m p  etm,(r ). (15) 

rap 

Now, Pl, r = 0 for indices tnr violating the picking rule 
of the site symmetry. According to the basic definition, 
site symmetry of f ( ta )  requires this to be true 
irrespective of the radial densities e~mp. Thus the 
corresponding coefficients anrmpt for all mp must vanish. 
This result implies that the functions C~rmp(a,fl,?) (11) 
yield a site-symmetric basis of  orientational distri- 
butions just by application of the same picking rule of 
lnr which makes the basis {Ylnr(O,¢)} of density 
functions site symmetric. In this form the result 
concerns all of the 27 non-cubic site symmetries. 

Cubic sites 

To consider the five cubic (tetrahedral or octa- 
hedral) site symmetries [23 (T), m3 (Tn), 432 (O), 43m 
(Ta), m3m (Oh)], we make a unitary transformation of 
the b a s i s  {Ylmp} to  obtain another real orthonormal 
basis {Ktj }, 

Ke( O#) = ~ k~p j ytmp ( O, tp), (16) 
m p  

which includes all cubic harmonics but is otherwise 
arbitrary (Von der Lage & Bethe, 1947; Bradley & 
Cracknell, 1972; cf. also Kurki-Suonio, 1977a; Kurki- 
Suonio et al., 1979) cf. Appendix. 

The rotated real harmonics can now be written 

~(a,fl,?)ytmp(O,~o) = Y Cllmp(a,~,?) Klj(O,~o) (17) 
J 

with 

With the expansion 

f(a,fl,?) = Z a}mp Ctjmp(a,fl,?) (19) 
IJ mp 

instead of (13), and (17) instead of (10) in the integral 
(1), we get the expansion 

p(r) = Z a}nr gtnr(r Kl/(0J°)" (20) 
Ij nr 

Owing to site symmetry of the orientational dis- 
tribution (19) this is necessarily reduced to the 
site-symmetric cubic harmonic expansion 

p( r )=  ~,pu(r)Ke(O,~o) (21) 
lJ 

of the dynamic density, irrespective of the static radial 
densities Ot, r(r ). Thus, the expansion coefficient a~n r of 
the orientational distribution must vanish identically 
unless the basis function Ke(O,~o ) is a cubic harmonic of 
the site symmetry. This proves that one can pick out of 
the set {C~mp(a,p,?)} a site-symmetric basis of  orien- 
tational distributions for each of  the five cubic point 
symmetries. The relevant partial set follows auto- 
matically from the set of site-symmetric cubic har- 
monics. The basis functions CJmp, equation (18), are 

t linear combinations of the real Wigner functions C,rmp, 
equation (11), just as the cubic harmonics, equation 
(16), are combinations of the real spherical harmonics, 
and the same coefficients will be applied. 

3. Body symmetry of orientational distributions 

The molecular symmetry defines the sequence of 
indices in the multipole expansion (2) of the static 
density. For molecules belonging to any of the 
tetrahedral or octahedral point groups we have to 
replace (2) by the expansion 

o(r) = y elj(r)Ktj(O,~o ) (22) 
tj 

in terms of the cubic harmonics, cf. (21). The rare case 
of an icosahedral molecule (Cotton, 1963) belonging to 
one of the two point groups 532 (Y) and 53m (Yh) 
(Bradley & CrackneU, 1972)requires, correspondingly, 
use of the expansion 

= Y l knrjC.rmp(a,fl, Y). (18) 
nr  

Equation (18) presents a unitary transformation of the 
basis {Ct.rmu }. Thus, {C}mp } is another real orthogonal 
basis with the same normalization 

f(CJmp) 2 dco= 8n2/(2l + 1). 

a( r )  = Z ab(r)K j(O, ) (23) 
U 

with the (totally symmetric) normalized icosahedral 
harmonics 

K]j(O,~o) = Y ,t knrj yt,r( O,~o) (24) 
n r  
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as the basis (Cohan, 1958; Laporte, 1948), cf. 
Appendix. 

A general treatment requires parallel discussion of 
the three different types of body symmetry, represented 
by the respective symmetric bases {Ytmp}, {Kt.i} and 
{K~j}, and of their coupling separately to the two 
different types of crystal site symmetry. Rotations of 
the real harmonics are represented by (10) and (17) in a 
non-cubic and a cubic site, respectively. Correspon- 
dingly, we can write for the rotated cubic harmonics 

the expansions 

f(o)) = Y a'nrj. Clrj(0)) 
lnrj 

= Z a~i C~(o)) 
lO 

: Z tl tl anr j Cnr j(o)) 
lnrJ 

(33) 

~(o))Ktj(O,q~) = ~. Ctnrj(o))Ytnr(O,q~) (25) 
nr "c;}(o)) = ~ aij 

llj 

= Z C~j(o))gll(O,(ff) (26) 

and for the rotated icosahedral harmonics 

~9? ( o))K~j( O,(o) = Y ,t Cnrj(o))Ylnr(O, tp) (27) 
nr 

= Z C~J(o))gll(O,~ O) (28) 
t 

in non-cubic and cubic sites, respectively, with the 
cubic-body rotators 

Clnrj(o)) = Z klrapJ Clnrrap(o)), (29) 
mp 

the totally cubic rotators 

C~(o)) = Z klr, klm,J'clrmp(o)), (30) 
nr mp 

the icosahedral-body rotators 

tl tl C n r j ( o ) ) :  Z kmpj Clrmp( 011 (31/  
mp 

and the icosahedral-body cubic-site rotators 

C~(o))  = Z klri  kmpjtl Clnrrap(o)) (32) 
nrmp 

in parallel with the general rotators, which are real 
Wigner functions, equation (11), and the cubic-site 
rotators, equation (18), cfi Appendix. 

As in the discussion of the cubic site symmetry, if 
the bases {Ktj}, (16), and {K~i}, (24), are arbitrarily 
completed to form a complete (unsymmetrized) ortho- 
normal basis for density functions, we find that the 
corresponding sets (29) to (32) of rotator functions are 
also completed to a complete orthogonal basis for 
orientational distributions with the normalization 
f (Ci) 2 do) = 8n2/(2l + 1). In these bases we can make 

of the orientational distribution, insert them together 
with the relevant static expansion [equation (22) or 
(23)] and rotation equation [one of (25) to (28)] into 
the basic expression (1) to yield one of the dynamic 
expansions (3)or (21). 

Switching now to the requirement of molecular 
symmetry, all radial densities Olmp, Olj or a[j, except 
those of the body-symmetric terms, vanish identically, 
and we are left with the body-symmetric multipole 
expansion (2), (22) or (23), depending on the case. In 
the corresponding rotator functions, (11), (18), (29), 
(30), (31) or (32), this concerns the upper index l 
together with the last lower indices (mp) or j. If these 
indices do not match with the allowed indices of the 
body-symmetric static expansion, the rotator C ! has 
nothing to rotate. Those functions are, thus, unneces- 
sary members of the f(o)) basis. Any such terms 
present in the expansion (13), (19) or (33) o f f (w)  will 
have no effect on the resulting dynamic distribution. 
The corresponding coefficients a t o r  a 'l are not genuine 
parameters of f(o)); their inclusion adds only a 
contribution of rotations #?(o)), which are identity 
transformations of the molecule. 

The body symmetry of the orientational distri- 
butionsf(o)) is, thus, most naturally defined in terms of 
the rotator basis. A general body-symmetric basis for 
orientational distributions of a rigid body is obtained 

"l from the set {C'~j}, (31), {C~,j}, (29) or {C,,rmp}, (11) 
for icosahedral, cubic and other body symmetries, 
respectively, applying the index-picking rule of the 
relevant point symmetry to the indices (l/) or (Imp). 

In non-cubic sites we get a basis, which is both body 
and site symmetrized, from the same sets by applying 
also the index-picking rule of the site symmetry to the 
indices (lnr). In cubic sites we have to transform first 
into the other sets {C[~}, (32), {C~j}, (30), or {C[mp} , 
(I 8), to obtain similarly the doubly symmetrized bases 
for orientational distributions of a molecule of icosa- 
hedral, cubic or other symmetry, respectively. [The 
doubly symmetrized basis functions C[# for a cubic 
body at a cubic site are called in the literature cubic 
rotators (cf. Hiiller & Press, 1979).] 
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4. Matrix formulation of the problem 

The libration matrices 

According to the results of the previous section we 
can now write the dynamical radial densities of a rigid 
librating molecule as linear combinations of the static 
radial densities of the same multipole order l for all site 
and molecular symmetries. At non-cubic sites we write 

Plmp(r ) : ~. tl bmp j ¢7~j(r) (icosahedral molecules) 
J 

-- Y btmpj trtj(r) (cubic molecules) (34) 
J 

= bmpnr tTlnr(r ) (other molecules) 
nr 

and at cubic sites 

Pti(r) = Y b;~ a~g(r) 
J 

(icosahedral molecules) 

In a local Cartesian coordinate system with the z 
axis along the 6 axis and y axis perpendicular to the 
plane of reflexion, the site symmetry corresponds to the 
index rule (l, mp) = (m + 2j, 3~t+) yielding the sequence 
(0,0+), (2,0+), (3,3+), (4,0+), (5,3+), (6,0+), (6,6+), 
(7,3+), (8,0+), (8,6+), etc. for the indices of the 
dynamic multipole expansion (3). 

In a body-fixed coordinate system with the z axis 
along the molecular 4 axis and all coordinate planes 
coinciding with planes of reflexion the body symmetry 
corresponds to the index rule (l, nr) = (22,4p+) yielding 
the sequence (0,0+), (2,0+), (4,0+), (4,4+), (6,0+), 
(6,4+), (8,0+), (8,4+), (8,8+), etc. for the indices of the 
static multipole expansion (2). 

Zero rotation (a  = fl = y = 0) is defined as the 
position in which the body axes coincide with the local 
axes. 

Now, whatever the librational behaviour of the 
molecule (within the symmetry, of course), the static 
radial densities tTtmo(r) are  transformed into the 
dynamic radial densities Pimp(r) by libration matrices B t 
= (blp ,r) with rows mp and columns nr labelled by the 
first and the second sequence, respectively: 

= Y~ b~ aly(r) (cubic molecules) (35) 
J 

= ~ b~n r a l n r ( r )  (other molecules) 
nr 

or shortly 

Pl(r) = B l at(r), (36) 

where Pl and o t are column vectors formed by the 
lth-order radial densities in the site- and body- 
symmetric expansions of p(r) and tr(r), respectively. 
The matrices B l formed by the coefficients b (or b') in 
(34), (35) will be referred to as libration matrices. 

The matrix elements b I are  related to the expansion 
coeff ic ients  a t of the molecular orientational distri- 
bution f(og) in the respective site- and body- 
symmetrized bases simply through 

87r 2 
b l - - -  a t. (37) 

2 l+  1 

The site symmetry defines the rows (mp) or (/) and 
the body symmetry defines the columns (nr) or (j) of B l 
through the relevant index-picking rules. All matrix 
elements are genuine independent parameters of the 
orientational distribution, except for normalization 
f f ( t n )  dw = 1, which fixes the value boo = 1, and for 
the condition f (w)  > 0 (cf  Hfiller & Press, 1979). 

This is the general theorem we wished to formulate. 

Examples  

Take a hypothetical case of a molecule with the 
symmetry 4 / m m m  at a site of symmetry ~]m2. 

Bo= (b°+o+)= (1), B2= (bo2+o+), 

B4 = (bg+o+ bg+4+), 

B6 = (bo6+ o+ b6o+ 4+ t 
~b6+o+ b~+4+/ 

( b°8+°+ b~+4+ b°S+ s+) etc. 
8 8 = bL4+ bL,+ 

The odd matrices vanish identically. The indices lmpnr  
define at the same time that subset of functions C I mp nr 
(11) which forms the doubly symmetrized basis for 
orientational distributions in this particular example. 

l The matrix elements bmpnr define the expansion 
coefficients of the orientational distributionf(w) in this 
basis: 

2 l+  1 
f ( to)  = Z 8792 blmp"r C~pnr(W)" 

lmpnr 

Correspondingly, at a cubic 43m site the possible 
orientational distributions of the same molecule would 
be defined by the matrices 

B o =  (1), B4 = (b o+ 

n6 = 

B s=(b~o+ bal4+ b~s+), 

etc. transforming the static multipole expansion (2) into 
the site-symmetric cubic harmonic expansion (21) of 
the dynamic density. The matrix elements give the 
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coefficients of f(og) in the doubly symmetrized basis 
(18): 

2l+  1 
f ( w )  = Z 8n-------~ b~nr C~nr(W). 

lint 

Obviously, orientational distributions of a low- 
symmetry molecule at a high-symmetry site are 
governed by row-like libration matrices (more columns 
than rows). A high-symmetry molecule at a low- 
symmetry site has column-like libration matrices (more 
rows than columns). 

If the body and site symmetry are equal all libration 
matrices are square. 

becomes a multipole expansion, 

g(S) = ~ gtmp(S)Ytmp(Os,qgs), (40) 
lmp 

of exactly the same body-symmetric form (2), (22) or 
(23) as that of a(r) with the static radial form factors 

oo 

gtmp(S) = 4761 J" atmp(r)jt(2nSr) r 2 dr. (41) 
0 

The rotational form factor becomes correspondingly a 
multipole expansion 

f (S)  = ~.flmp(S) Ylmp(Os,q)s) (42) 

5. Application to diffraction studies 

Structure factor formalism 

The symmetrized libration matrix formalism is 
intended for diffraction studies of orientationally 
disordered molecular crystals. 

It is presumed that the molecule behaves as a rigid 
body, i.e. there is a unique static density function a(r) 
representing the molecule at rest in the scattering 
process concerned. It may be smeared by internal 
vibrations independent of the external motion. 

The second necessary condition is that the cor- 
relations between the translational and rotational 
motion are negligible. This means that formation of the 
observable dynamic density from the static density can 
be described in terms of two independent probability 
distributions, the translational probability density r(R) 
of the centre of mass and the orientational probability 
densityf(oJ). The result is the convolution integral 

prR(r) = f r (R)p ( r -  R)d3R, (38) 

where p(r) is the rotational dynamic density, equation 
(1). 

The dynamic molecular form factor is correspon- 
dingly the product 

F ( S ) =  T(S)f(S) (39) 

of the temperature factor T(S) and the rotational form 
factor f(S), the Fourier transforms of r(R) and p(r), 
respectively. 

In this study the interest is focused on the rotational 
part of the problem. When expressed as a body- 
symmetric multipole expansion the static density a(r), 
(2), (22) or (23) is transformed by the rotations into the 
site-symmetric multipole expansion (3) or (21) of the 
rotational dynamic density. This transformation is 
transmitted by the libration matrices B t through (36). 

This representation is Fourier invariant (Kurki- 
Suonio, 1967, 1977a). The static form factor g(S) 

of the same site-symmetric form (3) or (21) as that of 
p(r) with the rotational radial form factors 

oo 

ftmp(S) = 4zci t f plmp(r)jt(2nSr) r z dr. (43) 
0 

And, clearly, the same matrices B t perform the 
transformation 

f / ( S )  = B l g l (S )  ( 4 4 )  

from static to dynamic radial form factors. 
If the static radial form factors are known or reliably 

modelled, the libration matrices B t give immediately the 
proper parametrization of the rotational form factor for 
analysis of experimental structure factors. The vibration- 
al part of the problem is included in T(S) which must 
be parametrized separately. Strongly anharmonic 
vibrations cause a complication of the problem. In 
favourable cases, however, the experimental data can 
be understood to yield independent quantitative infor- 
mation on each dynamic radial form factor ftmp up to 
some not too large multipole order l (Ahtee et al., 
1979; Vahvaselk~i & Kurki-Suonio, 1975). This 
emphasizes the significance of molecular symmetry for 
the solvability of the problem. Low body symmetry 
makes eachflmp a combination of many static gt,r The 
number of parameters (matrix elements of Bt) is, thus, 
large in view of the information contents of data. High 
body symmetry reduces some of the lowest-order 
libration matrices to just one column. There is then 
only one librational parameter for each Pimp to be 
solved. 

The number of significant parameters will depend on 
the convergence of the dynamic multipole expansion 
even more strongly than on the symmetry. 

Neutron versus X-ray analysis 

In the case of neutron diffraction one can start with 
the simple model where the static density is a known 
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array of 6 functions 

tr(r) : ~ gi 6(r  - -  ri) 
i 

6 ( r -  rt) 6(0-- 01) 
= ~ g i  6(¢p-- ¢p,), (45) 

i r 2 s i n  0 

where r i = (ri,0t,~pi) is the position of the ith atom with 
respect to the molecular centre of mass and gt its 
scattering length. This yields the radial densities 

trlrnp(r) = ~.giYlmp(Ol,q~t)r -2 6(r-- ri) (46) 
i 

and the radial form factors 

glmp(S)  : 4 7t'il ~ glytmp(Oi,~ot)jt(2nri S) (47) 
1 

for the multipole expansions of the static density and 
the static form factor, respectively (Ahtee et al., 1979). 
The convergence of these expansions is very slow. The 
convergence of the dynamic density and, thus, the 
number of significant parameters then depends 
critically on the orientational distribution. The favour- 
able case is that of an almost freely rotating molecule 
with nearly isotropic and smoothf(w). 

In the case of X-ray diffraction the relevant static 
density is the molecular charge density. For a compact 
molecule the static multipole expansion may already 
converge rapidly, and reduce effectively the number of 
significant parameters (Vahvaselk~i & Kurki-Suonio, 
1975). The formalism can be applied to such cases 
independently of the nature of the rotational motions. It 
may then be useful to study the low-order libration 
matrices also from neutron data for use in in- 
terpretation of X-ray data or for comparison, irrespec- 
tive of the slow convergence of the neutron form-factor 
expansion. 

6. D i s c u s s i o n  

The formalism proposed is purely representational. It 
leads only to a parametrization of the experimental 
information in terms of the rigid density function of the 
object and the orientational probability distribution. 
The parameters obtained are open for any kind of 
dynamical interpretations. In this respect it is parallel to 
the Fourier invariant treatment of anharmonic vib- 
rations by Kurki-Suonio et al. (1979) and to the TLS 
formalism by Schomaker & Trueblood (1968), where 
the discrete pattern of atomic coordinates has the role 
of the density function of our formalism. 

Because of the charge-density use of the formalism it 
would be useful to work out the libration matrices B t 
corresponding to the TL matrix formalism of 

Cruickshank (1956) for small librations. The cor- 
responding general TLS formulation of Schomaker & 
Trueblood (1968) of small-amplitude rigid-body motion 
falls, however, beyond the present multipole treatment, 
because it explicitly involves correlation between 
translational and rotational motion (cf. Willis & Pryor, 
1975, Ch. 6). An extension of the multipole formalism 
to include these correlations has been done by Press et 
al. (1979) for cubic sites. A generalization to include all 
body and site symmetries is under preparation. 

It is possible, even quite common, to start right from 
the beginning from a dynamical model involving, for 
example, some potentials and force constants, to derive 
the structure factors from them within some of the 
conventional approximations of statistical mechanics, 
and to refine directly the dynamical parameters. The 
representational parametrization may still be useful as 
an intermediate step leaving the freedom for different 
dynamical modellings. 

The most obvious and simple dynamical model to be 
coupled with the present formalism is obtained assum- 
ing the molecule to move in an effective one-body 
orientational potential V ( w ) .  Since the potential must 
be both site and body symmetric we can expand it in 
the relevant doubly symmetrized basis (11), (18), (29), 
(30), (31) or (32) to obtain the expansion 

V(o ) )  Z l 1 : Vnrmp Cnrmp(0")) 
lnrmp 

(or some of the other forms depending on the case). 
0 The constant term V0+0+ can always be chosen to 

vanish. 
In the high-temperature classical limit the orienta- 

tional distribution is the Boltzmann distribution 

f(o)) = --~- exp k T  ' 

where N is the normalization constant to make 
ff(co)dw = 1. This is also the limit of nearly free 
rotation where we expect the formalism to be best 
applicable. The limit suggests the approximation 
e -x  ~ 1 -- x for the exponential. This yields 

f ( m )  = ~ 1 k T  

and gives, thus, the direct interpretation 

1 
l __ l 

anrmp 8 ~  2 k T  Vnrrnp' l > 0, 

for the expansion coefficients of f ( w )  in (13) or, 
according to (37), 

1 
blr mp = __ 1 (2l + 1 ) k T  Vnrmp' l > O, 
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for the libration matr ix elements in terms of  the 
potential coefficients. 

This is a parallel of  the one-particle-potential 
approach  to anharmonic  t ranslat ional  vibrations (el  
Willis & Pryor ,  1975; Kurki-Suonio et al., 1979). The 
most  essential difference is in the nature of  the basic 
approximation.  In the t ranslat ional  case the main term 
is a Gauss ian  corresponding to harmonic  approxi- 
mation,  which is of  a localized nature  and most  valid 
for small vibrations close to the potential minimum. 
This gives a flavour of  contradict ion because the 
statistical t reatment ,  on the other hand,  assumes high 
temperature.  This controversy  does not occur here 
because the dominat ing term is the constant  correspon- 
ding to complete isotropy, i.e. free rotation, and 
requires consistently high temperatures.  

Financial  support  by the Jenny and Antti  Wihuri  
Foundat ion  to M K  and by the Finnish A c a d e m y  to 
KK-S  is gratefully acknowledged.  

Table 1. Index rules imposed by special symmetry 
elements 

Symmetry element Index rule 

Centre of symmetry, i (2;t,m,p) 
n-fold axis, n IIz axis (l, ng,p) 
n-fold inversion axis 

t] IIz axis n even (m + 2j, ~g, p) 
n odd (22,np,p) 

2-fold axis 2 IIx axis [/,m,(-) t-m] 
2 Ily axis [l,m,(--)q 

Plane of reflexion, m i x  axis [/,m,(-) m] 
m_L y axis ( l,m, + ) 
m_Lz axis (l, 1 - 2j, p) 

The index rules specify the indices (lmp) of the real spherical 
harmonics ytmv(04o) occurring in the multipole expansions (2) and 
(3) of the body-symmetric static density and the site-symmetric 
dynamic density, respectively. The same rules apply to the indices 
(lnr) for site symmetry and to the indices (lmp) for body symmetry 
of the real rotators Ct,, mo(a,fl, y) occurring in the expansion (13) of 
the orientational distribution. 2, g and j in the rules denote any 
integers such that l >_ rn > 0. 

APPENDIX 
Definitions and tables for symmetdzed multipolar 

bases 

Normalized real spherical harmonics 

1 / cos  m~0 
Ylm+(O,~o) = - - P T Z ( c o s  O) 

- N l m  ( sin m~0 

l =  0, 1, 2 . . . .  ; m = 0, 1 . . . . .  l. 

Normal iza t ion:  

n 2n  

f f [ytm+(O,~o)]Zsin 8 d O d v =  1, 
o o 

2n (l + m)! 
N~m = (1 + 5mO) - -  - -  

2l + 1 ( l --  m)!' 

1 d ~ 
P~t(z)= Pl(Z)-- 21 1----~. dz I ( z 2 -  1)t' 

d m 
PT(z) = (1 - -  Z 2 )  m / 2 -  Pt(z). 

dz m 

Real Wigner functions 

(--1) m+. 
C..mp( ,#,y) = 

(1 + 6too) '/1 (1 + 6.0) 1/2 

[ cos,no,+ m' l 
[ p  sin (na  + my)J 

+ ( - 1 ) "  d_.m(fl  ) 

x s i n ( n a - m y )  ] ]  ' r p =  , 

l -- O, 1, 2 , . . . ;  nr, m p =  0+, 1 +, 2+ . . . . .  1 +, 

d~,,(fl) -- [(l + n ) ! ( l -  n)!(l + m ) ! ( l -  m)!] 1/2 

(--1) t (COS I~) 21+n-m-2` (sin lfl) T M  

(l + n - t)! ( l -  m - t)! t! (t + m - n)! 

Normal izat ion:  

2n  n 2n  8 ~ 2  

f f f [Cnrmv(a,fl, Y)]2dasinf ld f ldY - - .  
o o o  2 l + 1  

Special relations: 

d~.( f l )  = (--1) n-m dlm(ff), 

cL0+(-,#,~,/= y t . . (L . ) ,  

Cto+mp(a,fl'Y) = P(-1)m ~ ~ ] Ytmv(gY)" 

Table 1 shows the index rules imposed by special 
symmet ry  elements and Table 2 the index rules for 
non-cubic crystal lographic point groups.  

Normalized cubic harmonics 

Ktj(O,q~)= Z l k.rjyt.r(O,~o), 
. r  

rt 2rr 

f f [Ku(8#)]Zsin OdOdq~= 1 
o o 

Cubic-site rotators: 

C~mv(a,fl,7) = • k~, t C~,~p(a,fl, y), 
n r  



M I K K O  K A R A  A N D  K A A R L E  K U R K I - S U O N I O  

47[ t 1/2 
C~o + (cq~,y) = ~ 2--7~+1 ] Kti(~'(t)" 

Cubic-body  rotators:  

Totally cubic rotators: 

C l  j (a ,~ ,~ )  Z I 1 = kmpjCnrmp(Ct, fl, y), 
mp 

cl+j(a'~'Y) = (--1)/\2~'--~1+1] KIj(fl'Y)" 

Table 2. I n d e x  rules f o r  non-cubic  crys ta l lographic  
po in t  groups  

Symmetry Choice of axes Index rule 

1 Any all (l,m,p) 
Any (22,m,p) 

2 21Ix [l,m,(_)t-m] 
211y [ l,m,(_)t] 
211z [/,2g,p] 

m m ± x  [l,m,(_)m] 
m L y  (l,m,+) 
m_Lz (l, l-- 2j, p) 

2/m 21Ix, m ± x  [22,m,(_)m] 
2 Ily, m ± y  (22,m,+) 
2 IIz, m L z  (22,2#,p) 

222 2 IIz, 2 Ily, (2 Ilx) [l,2g,(--)q 
mm2 2 IIx, m_Lz, (m±y) (l, I -  2j, +) 

211y, m±z,  (re±x) [l, l -- 2j, (_)t] 
2 Ilz, m_Ly, (m_Lx) (/,2g,+) 

mmm mA_z, re ly ,  m l x (22,2g,+) 

4 4 IIz (/,4g,p) 
4 4 IIz (l, 21 - 4j, p) 
4/m 4 IIz, m_l_z (22,4g,p) 

422 4 Ilz, 2 Ily, (2 ~_ xyz --, yx2) [l,4#,(--)q 
4ram 411z, m_Ly, (m ~ xy --, yx) (/,4g,+) 
42m 4 Ilz, 2 IIx, (m ... xy --,yx) [/, 21- 4j, (--)1] 

m_Ly, (2 ~ xyz II -, yx£) (l, 2l -- 4j, +) 
4/mmm 4 Ilz, m±z,  m_Lx, (m ~ xy -+ yx) (22,4g,+) 

3 3 IIz (/,3g,p) 
j IIz (22,3g,p) 

32 3 IIz, 2 Ily 
21Ix 

3m 3 Ilz, m_L y 
m ± x  

3m 3 IIz, m_l_y, (2 Ily) 
re±y, (21Ix) 

[l,3g,(-)q 
[l,3g,(--) t-m] 
(/, 3#,+) 
[ l ,3H(--)  m ] 
(22,3g,+) 
[22,3g,(-) m] 

(t,6u,p) 
(m + 2j, 3g, p) 
(22,6U,p) 

6 

6/m 
. . . . .  
622 
6mm 
6m2 

6/mmm 

6112 
(~ IIz = (3 IIz, m_Lz) 
6 Ilz, m_Lz 

6 IIz, 2 Iry, (2 Ilx) [L6g,(-)q 
6 IIz, m_Ly, (m_l_x) (/,6/~,+) 
d IIz, m_Ly, (2 IIx) (m + 2j, 3g +) 

m_Lx, (2 Ily) Im+ 2j, 3#, (-)q 
611z, m_Lz, m_Ly, (m_Lx, 21Ix, 211)) (22,6g,+) 

See note below Table 1. 
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C~j(a,fl, y) = E ktnr "kt' mpj'Clrmp(~,i~,~) • 
nrmp 

Normalization: 

f [C~mp] 2 dco .f 1 2 = [Cnr J] d w  

87[ 2 
= J[C[j] 2 dco = ~ .  

2 l +  1 

Table 3 gives the cubic conversion factors up to 
tenth order. 

Table 4 gives the index rules for cubic symmetries.  
These five symmetr ies  are obtained from or thorhombic  
and tetragonal symmetr ies  by introducing a threefold 
axis in the [ 111J direction as follows 222 --, 23, m m m  --, 
m3, 422 --, 432, 3,2m --, 43m and 4 / m m m  --, m 3 m .  
Accordingly,  the cubic ha rmonics  are obtained from 
the relevant Ylmp(O,~o) through symmetr iza t ion with 
respect to the threefold axis. They are, thus, natural ly 
classified into four groups: 

Even octahedral ,  Oe, derived from (22,4g,+) 
Odd octahedral  Oo, derived from (22 + 1,4H,-) 
Even tetrahedral  T e, derived from (22, 4/t + 2, +) 
Odd tetrahedral  To, derived from (22 + 1, 4 / /+  2, - ) .  

The index rules can be summar ized  by stating that 
23 (T) involves all four classes Oe, 0o ,  Te, T O 
m3 (Th) involves O~, T~ 
432 (O)involves  O e, O o 
43m (Ta) involves Oe, T o 
m 3 m  (Oh) involves only O e. 
These classes of  cubic harmonics  are equal to the 

four classes of  tetrahedral  harmonics  of  Laporte  
(1948). According to his results the number  N t of  
independent  cubic harmonics  of  lth order fulfils the 

Table 3. Cubic conversion fac tors  k t mpj up to tenth 
order 

Even 

(/ 0+ 

01 1 
4 1 ½(~)1,2 
6 1 ½(½)1,2 
62 
8 1 ~ 331'5 

10 l k(-~) u2 
102 

Odd 

31 
71 
91 
92 

mp 

2+ 4+ 6+ 8+ 10+ 

½(91,2 
-½(91,2 

111,2 - -  k 5 I/2 
k(])l,~ ~(q),,2 

2-- 4-- 6-- 

1 
½(¥)1,2 ½(~)1,2 

8 -  

½(~),,2 __½G),,2 
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Table 4. Index rules for  cubic symmetries 

Point group 
23 m3 432 

lj T T, 0 

O1 x x x 

31 x 
41 x x x 
61 x x x 
62 x x 
71 x 
81 x x x 

91 x 
92 x x 

10 1 x x x 

102 × × 

43m m3m 
T d Oh 

x × 
x 
× x 
x x 

X X 

Table 5 gives the icosohedral  conversion factors up 
to tenth order. According  to Laporte  (1948) the 
number  N l of  independent  icosahedral  harmonics  of  l th 
order fulfils the relation Nt+30 = N t + 1. F rom l = 11 to 
29 there are no icosahedral  harmonics  for l = 11, 13, 
14, 17, 19, 23, 29 and one for the other values of  l. 
[Note that  Laporte ' s  (1948) expression in his Table 15 
for the tenth-order harmonic  is in error. It should read 
153tPl 0 + 675(06 (022 -- (4500/11)  tp~.] The index rules for 
the icosahedral  groups consist  of  the s tatement  that  all 
icosahedral  harmonics  belong to 532(Y) while only the 
even ones belong to 53m(Yh). 

relation Nz+~2 = Nt + 1 for each class separately. With 
the addition that  for l = 11 there is just  one cubic 
harmonic  K1L~(O,~o) which belongs to the class T o, this 
completes the informat ion about  index rules of  the five 
cubic groups. 

Normalized icosahedral harmonics 

K]j(O, tp) = ~. ,t knr jY ln r (O~q~) ,  
n r  

7t 27t 
f f [K~j(OJp)12sin OdOdtp= 1. 
0 0 

Icosahedral-body rotators: 

tl Pl ! 
Cnrj(a, f l ,~)- ' -  Z kmpjCnrrap(a,fl ,~).  

mp 

Icosahedral-body cubic-site rotators: 

tl C i j ( c t , f l ~ ) =  Z klnri 'l l kmp j Cnrmp(a, f l~) .  
nrmp 

Normalization: 

8zc 2 
fie" ]2 rico= I [C~J] 2 r ico- i .  

nrj 2l + 1 

Table 5. Icosahedral conversion factors ,t kmo j up to 
tenth order corresponding to the coordinate axes chosen 

by Cohan (1958) 

The z axis is a fivefold axis. The xz plane contains in addition one 
fivefold axis above and two threefold axes below the positive x 
axis. The y axis is a twofold axis. 

mp 

0" 0+ 5+ 

01 1 
6 1 } 11 v'2 -~  141/2 

10 1 ~ (~.1),/2 ~418,/2 

10+ 
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